Three Moduli Spaces of Triangles

Prof. Eric S. Brussel, Madeleine E. Goertz,* Elijah J. Guptill,* and Kelly J. Lyle*

Department of Mathematics, California Polytechnic State University, San Luis Obispo

Key Definitions

- (a) A **triangle** is a point $(A, B, C) \in \mathbb{C}^3$, where each coordinate is a vertex of the triangle. It has opposite side lengths a, b, c, and corresponding interior angles α, β, γ .
- (b) A triangle is **(non)degenerate** if its area is (non)zero.
- (c) See Figure 2. A degenerate triangle $(A, B, C) \in \mathbb{C}^3$ is of
- (i) mult. 1 if A, B, C are distinct collinear points.
- (ii) mult. 2 if exactly two of the vertices are equal.
- (iii) mult. 3 or trivial if all three vertices are equal.
- (d) A nondegenerate triangle $(A, B, C) \in \mathbb{C}^3$ is **positively (negatively) oriented** if the curve $A \to B \to C \to A$ of line segments in the complex plane is positively (negatively) oriented.

Construction of Moduli Spaces

SSS Construction — 2-sphere

(a) Top View

(b) Side View

Figure 1: The Sphere of Triangles. The positively oriented, negatively oriented, acute, and obtuse triangles appear in the yellow, gray, dark, and light regions, respectively. The right, mult. 1 degenerate, and mult. 2 degenerate triangles appear in black, red, and blue, respectively.

Let $p \in \mathbb{C}^3$ be a triangle. We prove that the (labeled, oriented, direct) similarity class of p is

$$[p]=\{zp+t(1,1,1):z\in\mathbb{C}^{ imes},t\in\mathbb{C}\}\subset\mathbb{C}^{3}.$$

The dual of [p] is a (complex) line in \mathbb{C}^{3*} that lies on a plane. Therefore, the similarity classes are parameterized by the Grassmannian $Gr(1,\mathbb{C}^2)$. We map to S^2 , the 2-sphere, using the Hopf map

$$\mathsf{Gr}(1,\mathbb{C}^2) o S^2 \ [a] \mapsto a^{-1} \mathsf{i} a.$$

See [3] and [4].

Abstract

In his Pillow Problems [2], Lewis Carroll asked, "what is the probability that a random triangle is obtuse?" To answer this question requires defining a "random" triangle, which many authors have explored [3, 4, 5]. We consider labeled, oriented triangles and examine the geometry of their direct similarity classes under three different classical similarity theorems: side-side, side-angle-side, and angle-angle-angle. Each theorem results in a topologically distinct moduli space: a 2-sphere, Klein bottle, and Clifford torus of triangles.

Figure 2: Example multiplicity 1, 2, and 3 degenerate triangles

SAS Construction — Klein bottle

We begin with a triple of real numbers, (θ, a, b) . a and b represent side lengths (possibly negative, but not both zero) and θ represents their enclosed angle (mod 2π). To mod out by scaling, we projectivize the second two coordinates:

$$(\theta, a, b) \sim (\theta, \lambda a, \lambda b)$$
 for all $\lambda \in \mathbb{R}/\{0\}$.

Then we account for the relation (Figure 3):

$$(\theta, a, b) \sim (\theta + \pi, -a, b).$$

Figure 3: SAS Relation

After parameterizing the square $[0,\pi] \times [-\frac{\pi}{2},\frac{\pi}{2}]$ via the map $(\theta,a,b) \mapsto (\theta,\tan^{-1}(\frac{b}{a}))$ and gluing appropriately, we discover a Klein bottle \mathfrak{D} :

Figure 4: The Klein bottle.

AAA Construction — Torus

Two triangles are similar if their interior angles are equal, in the same order. It is shown in [1] that the planes $\alpha+\beta+\gamma=\pm\pi$ glue together to form a torus:

Figure 5: The Torus of Triangles [1, Figure 4.2]

Observations

Metrics

- (a) On the sphere of triangles, we use the natural metric of geodesics, which is induced by the Fubini-Study metric on $Gr(1, \mathbb{C}^2)$ and preserved by the Hopf map.
- (b) For SAS similarity, the Klein bottle admits the flat or Euclidean metric on Figure 4.
- (c) For AAA similarity, the torus admits the flat or Euclidean metric on Figure 5 [1].

Probabilities

The metrics defined above allow us to compute probabilities. Let P(O) be the probability that a triangle is obtuse.

(a) SSS: $P(O) = \frac{3}{4}$.

(b) SAS: $P(O) \approx 0.84$.

(c) AAA: $P(O) = \frac{3}{4}$ (see [1].)

Degenerate Triangles

Degenerate triangles appear differently under the three constructions. Multiplicity 1/3 and 2 degenerate triangles are shown in red and blue in Figures 1, 4, and 5.

Theorem	Mult. 1	Mult. 2	Mult. 3
SSS	3 curves	3 points	N/A
SAS	3 curves	2 curves, 1 point	N/A
AAA	N/A	3 curves	1 point

Table 1: Characterization of degenerate triangles.

Comparison of Spaces

- (a) The sphere of triangles admits a transitive continuous group action by SO(3), but is not a PHS.
- (b) We do not have a natural transitive group action on the Klein bottle. Investigation ongoing.
- (c) The torus of triangles is a PHS for the Clifford torus, a compact abelian Lie group [1].

Further Work

- (a) We would like to induce the three similarity theorems on the same original space of triangles.
- (b) We would like to find a transitive group action on the Klein bottle.

References

- [1] Brussel, E., and Goertz, M. E. (2023) *The Torus of Triangles*. arXiv:2303.11446.
- [2] Carroll, L. (1893) *Curiosa Mathematica, Part II: Pillow Problems*, MacMillan, London.
- [3] Edelman, A. and Strang, G. (2015) Random Triangle Theory with Geometry and Applications, Found. Comput. Math. **15** 681-713, DOI 10.1007/s10208-015-9250-3.
- 4] Kendall, D.G. (1989) *A Survey of the Statistical Theory of Shape*, Stat. Sci. **4** 87-120.
- [5] Portnoy, S. (1994) A Lewis Carroll Pillow Problem: Probability of an Obtuse Triangle, Stat. Sci. **9** 279-284.

Acknowledgments

This research was generously supported by the William and Linda Frost Fund in the Cal Poly Bailey College of Science and Mathematics. *Frost Research Fellow & Recipient of a Frost Undergraduate Student Research Award.

